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LIQUID CRYSTALS, 1994, VOL. 17, No. 1 ,  65-93 

Magnetic field induced bistability in distorted nematic ground states 

by U. D. KIN1 
Raman Research Institute, Bangalore-560 080, India 

(Received 14 June 1993; accepted 22 November 1993) 

Previous theoretical studies are extended to consider bistability of director 
orientations induced by changing the tilt of a magnetic field applied to a nematic 
sample. The ground state configuration which is assumed to be twisted, with the 
director tilted at the sample planes, can be one of two kinds-S, and S,. The rigid 
anchoring hypothesis is employed throughout. When the field is sufficiently strong 
there occur two independent branches over which the distortion varies as the 
magnetic tilt is changed and these branches generally overlap over the bistable 
region. When the ground state twist is high enough, the bistable region can 
disappear altogether leaving a gap of no overlap between the two branches. Linear 
stability analysis shows that the static orientation tends to become unstable against 
linear perturbations when the magnetic tilt crosses the edges of the gap. It is possible 
that the distortion changes irreversibly from the S, type (or S, type) to one ofS, type 
(or S ,  type) causing a considerable lowering of the overall twist. Results for positive 
diamagnetic anisotropy materials (xA > 0) are compared with those for negative xA 
materials. When the ground state is of the S, type, a sufficiently strong field applied 
along certain directions can produce a transition at a threshold above which the 
distortion becomes asymmetric relative to the sample centre. The case of chiral 
nematics and that of weak anchoring are briefly reviewed. 

1. Introduction 
Nematic and cholesteric liquid crystals have been the subject of basic research 

because of their many fascinating anisotropic physical properties [ 1-51. For the 
purposes of describing macroscopic phenomena, it is convenient to introduce the unit, 
non-polar, director vector field n which describes the preferred direction of orientation 
at a given point. The direction of alignment ofn at  surfaces can be controlled by suitable 
surface treatment. In a given sample, the orientation of n can be affected by the 
application of external electric and magnetic (H) fields. By exploiting the optical 
anisotropy of these materials and by proper use of polarized light, it has been possible 
to develop display devices based on various electro-optic effects ([6]; for recent reviews 
on the subject of displays and applications see for instance [7] and references therein). It 
is the strong interaction between the material and the applied electric field which is 
responsible for making these devices work at  reasonably low voltages. 

The effects of external fields on the director orientation in nematic and cholesteric 
samples are well understood on the basis of continuum theory [l-51. This theory has 
also been extensively used [7] for understanding the working of electro-optic devices 
and also for improving the performance of such devices via mathematical simulation. 

Limitations of the earlier twisted nematic devices have been removed by the use of 
supertwisted nematic configurations [8-101. In these devices the director field in the 
ground state is twisted through more than n/2 radians by the addition of chiral 
dopants. The helical axis is aligned normal to the plates between which a voltage can be 

0267-8292/94 $10.00 @) 1994 Taylor & Francis Ltd 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



66 U. D. Kini 

applied and by suitable surface treatment, the director at the sample planes is also 
pretilted away from the homogeneous alignment (a recent review on these devices can 
be found in [lo]). Electrical switching between bistable orientation patterns [ll] has 
also been suggested [l2] as a possible means of building display devices. 

In all the above cases, an electric field is employed and the direction of the field is 
normal to the plates. It should be interesting to study the effect of changing the 
direction of the applied electric field on the director orientation in such devices, but this 
is not straightforward in practice as it would involve applying voltages simultaneously 
along, as well as normal to, the sample planes. It is well known, for instance, that an 
electric field applied along the sample planes can lead to a discontinuous Frkedericksz 
transition, bistability, static periodic deformations [ 131, etc. These effects are mainly 
brought about by the high electric susceptibilities of the material which cause 
considerable modification of the electric field in the presence of director gradients 
inside the sample. 

A magnetic field, in the other hand, is less interesting from the viewpoint of device 
applications, but is more convenient for study of director distortions, as its direction of 
application can be chosen freely. The action of a magnetic field can also lead to 
interesting effects. For instance, the change in tilt of a sufficiently strong field can lead to 
bistable behaviour [14,15] in which the variation of average orientation as a function 
of the magnetic tilt falls on two separate branches which overlap. In the bistable region, 
therefore, there can exist two separate distortion states with different deformation free 
energy, each state being the result of the particular ‘history’ of variation of the magnetic 
tilt. Attempts have been made [15] to utilize these effects to estimate elastic constants. 
I t  appears [16] that the language of catastrophe theory can also be used to understand 
the discontinuous transitions which occur at the edges of the bistable region. 

The continuum theory has been employed [17,18] to study the occurrence of 
bistability for different parameters including the director tilts at the boundaries, 
director anchoring strengths at the sample planes, orientation of the magnetic plane 
etc; the studies have also been extended to nematics having negative xA, leading to the 
investigation of transitions between distortions of different kinds. Perturbation 
analysis has shown that in the presence of bistability, the static solution on one of the 
branches can become unstable when the magnetic tilt approaches the edges of the 
bistable region. This lends indirect support to earlier observations [14-161 of 
discontinuous orientational changes at the peripheries of the bistable region. 

In these studies, the effect of a ground state twist on the occurrence of bistability has 
not been investigated in detail. The ground state of a nematic can be twisted, in most 
cases, by a rotation of one of the sample planes relative to the other or by the addition of 
chiral dopants or by a combination of these two processes. It seems interesting to find 
out how the presence of an overall twist in the ground state will affect the bistability of 
magnetic field induced distortion under a variation of the magnetic tilt. This should be 
of special interest, because earlier studies have shown that when the ground state twist 
caused by intrinsic chirality is sufficiently high, with the helical axis and magnetic field 
normal to the sample planes, the resulting deformation above threshold may not be 
homogeneous [ 191, but periodic [20]. It also seems necessary to include director tilt at 
the boundaries as one of the relevant parameters. 

With this motivation, the mathematical model is briefly described in 5 2, while $5 3 
and 4 deal with the results for different ground states of a nematic without intrinsic 
chirality. In $ 5, results for a negative xA material are compared with those for a positive 
xA nematic obtained in the earlier sections. Section 6 concludes the discussion. 
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Bistability of orientation patterns in nematics 67 

2. Mathematical model, boundary conditions and method of solution 
We follow closely the mathematical model employed in E18-j. Let a chiral nematic 

be confined between plane parallel plates z = k h (sample thickness = 2 h) at which the 
easy directions of director orientation are given by 

d , = (cos 8,  cos 4 ,, cos 8, sin 4 ,, sin 8 *) (1) 

in rectangular Cartesian coordinates. The magnetic field impressed on the sample 

H = (HC,C,, HC,S,, HS,); C ,  = cos a; S ,  = sin p (2) 
is described by the polar angle a and the azimuthal angle p. Clearly, when a= x/2, H is 
directed along the z axis (normal to the plates) and the azimuthal angle is of no 
consequence; when a=O, H lies in the xy plane. The resulting director distortion is 
assumed to be homogeneous and mono-domain so that 

n = (C,C,, CJ,, So); O =  8(z); 4 = &). (3) 
Essentially this assumes that we concentrate on a region of the sample away from the 
lateral edges and that formation of domains having homogeneous deformations of 
different parity separated by domain walls is ignored. The equilibrium configuration is 
characterized by the total free energy density W, and the vanishing of the two 
independent components of the total bulk torque r: 

Wv .fi(OM.: + C{fz(WC f f3(@$?}/2I f .fh(Q, 4); (4) 

where K , ,  K , ,  K , ,  are the splay, twist and bend curvature elastic constants, 
respectively; k ,  = 2xK, /P , ;  Po is the equilibrium pitch of the unconstrained chiral 
nematic ( k ,  = 0 for a non-chiral nematic); d,z = dd/dz etc. The equilibrium configuration 
(3) can be obtained by solving (5) with suitable boundary conditions. Then by 
integrating W, (4), the total free energy can be estimated. The inclusion of the surface 
free energy density 121) leads to a more realistic set of boundary conditions (see 
equations (2.5) and (2.7) in [18]). The inclusion of finite anchoring energy brings into 
the picture the anchoring strengths at the boundaries as additional parameters. For the 
sake of simplicity, therefore, we adopt the rigid anchoring hypothesis (equation (2.8) in 
[18]) so that 

O(z= f h ) = O * ;  4 ( z =  + h ) = f $ , .  (7) 

The solution of (5) and (7) is conveniently effected by using the orthogonal collocation 
method [22] with the zeros of the 24th order Legendre polynomial as collocation 
points [23]. Then the integration of W, to calculate the total free energy of the sample 
can be achieved by employing the Gaussian quadrature technique [23] in tandem. In 
the next few sections we shall study the results obtained for different cases. 
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3. Results for the case k, = O ;  no intrinsic chirality 
It is assumed that the material is a nematic without a chiral dopant. Before making 

detailed calculations, it is necessary to fix the ground state configuration (i.e. the 
director orientation in the absence of external fields). A reference field should also be 
defined so that a suitable, dimensionless reduced field can be used to indicate the 
magnitude of the field strength. To start with, it is assumed that 

45 = + 4 0 ;  05 =do. (8) 
This shall be called the ground state S ,  (in $4  another ground state is encountered). 
According to (8), the twist angle d(z )  is antisymmetric and the splay-bend angle 8(z) is 
symmetric relative to the sample centre when H = 0; at z =0, 8(z) takes the extremum 
value, say, OM, but 4(z)=O. This also means that the director at the sample centre is 
aligned along the x axis. For reasons of convenience, symmetry, antisymmetry or non- 
symmetry will always be referred relative to the sample centre ( z  =O). 

In the special case 8, =0, the S ,  ground state reduces to the simple twisted nematic 
with @ ) = O  and 4(z )  = 4,z. The non-polarity of n imposes the restriction that I4,l < xi4 
in order that the ground state may have a singie domain twist distortion. If the material 
has zA > 0 (this is assumed to be true throughout the present work, except, as in tj 5, 
where it is explicitly stated to be otherwise), a field along z (i.e., x = n/2) leaves the 
ground state unchanged provided that H < H ,  with [19] 

HF= [(K l(n2/4h2)+ (K3-2K2)(4~/h2)) / I*OXA11’2 .  (9) 
This seems to be a convenient field with respect to  which H can be measured. A reduced 
field 

R = H / H F  (10) 

can now be defined. It should be remembered that H ,  is a function of Cpo which is half 
the total twist in the S, ground state. As long as we compare different results obtained 
for a given do, the definition (10) suffices. If, however, we are comparing results for 
different 4, in the same diagram (as in $4.3.), it becomes more appropriate to use a 
definition of the reduced field in terms of a standard field which is independent of &. It 
has already been shown [17, IS] that under the rigid anchoring hypothesis, the 
governing equations (5) can be cast into scaled form using (10) and the dimensionless 
variable 5 = z/h. Because of this, some convenient values can be chosen for the sample 
thickness and zA; say, h= 100pm; xA=4z x lO-’SI units. All angles are measured in 
radian. The curvature elastic constants for the nematic (E7) are [24], 

(K,,K2,K3)=(1-85, 1.3, 2 . 0 2 ) ~  10-”N; 
K,/K,= 1.423, K3iK2= 1.554; KJK, = 1.092. 1 (11) 

1 (12) 

As will become clear later, it is necessary to compare results for E7 with those obtained 
for another material, say, 5CB [25 ] ,  

(Kl,  K,, K3)=(6.41, 3.97, 9.23) x 10- l 2  N; 

Kl/K,=1615; K31K,=2.325; KJK, =1.44. 

A significant difference between the data sets (1 1) and (12) is that the quantity K, - 2K, 
is negative for the former but positivc for the latter. This means that for E7, H ,  should 
be less than the splay Frtedericksz threshold; for 5CB, the splay threshold should be 
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Bistability of orientation patterns in nematics 69 

less than H,. It seems worth putting this to anexperimental test. It must be remembered 
that the significance of the ratio KJK,, as also its effect on determining the ground 
state distortion, has already been pointed out [26]. 

3.1. Investigation of the stable ground state; H = 0 

be obtained by starting with a uniformly tilted orientation in the xz plane 
Noting the characteristics of the S ,  ground state, it is clear that this distortion can 

no = (cos 8,, 0, sin 8,) (1 3) 
involving zero twist (4, = 0). For definiteness, 8, > 0; it is clear that results for 0, < 0 can 
be obtained by simple transformations. Remembering that the director is rigidly 
anchored at the sample planes; it is now assumed that the sample boundaries z = Ifr h 
are rotated about the z axis through & 4, such that for a given 4,, the total twist in the 
sample is 2& (again, 4, is assumed to be positive). As the twist in the sample is 
increased from zero, the splay-bend distortion also sets in and 8, changes from 0,. 
While the 8(z) profile is symmetric, the 4 ( z )  profile is antisymmetric with 4 ( z )  increasing 
monotonously from -4, at z =  - h  to 4, at z = h .  Because of this, 8, is the only 
quantity of interest here. 

Figure 1 (a) contains plots of 8, as a function of 4, for the E7 material parameters 
(1 1). It is found that at a given B0, 8, increases with 4,; when 4, exceeds a critical value 
4c (which is, in general, a function of the material constants and do), 8, increases 
sharply and for 4, > 4,, a solution cannot be found for (5) satisfying (7). The non- 
existence of the solution is deduced when the algorithm used for calculating the 8 and 4 
profiles diverges at 4,>& When 8, is enhanced (see figurel(a) curves 2,3), 4, 
diminishes. It is thus clear that for a given pre-tilt angle O,, the S, ground state exists 
provided that 4, < &. We shall postpone, for the moment, answering the question as to 
what happens to the deformation when 4, exceeds 4, (seeQ4). 

It may be checked that identical curves to those in figure 1 (a) will result if the sign of 
4, is reversed and 8, plotted as a function of - 4,. The curves will also represent the 
variation of 8, for negative 80 if we replace 8, by -8, on the y axis. 

Figure 1 (b) shows the same functional variations as figure l(a), but for 5CB 
parameters (12). It is found that up to about 0, =0+35, 8, actually decreases when 4, is 
enhanced (see figure 1 (b), curve 1); stable solutions for the S ,  ground state are found to 
exist even beyond 4, =n. When 8, is increased beyond this value (figure 1 (b), 
curves 2 , 3 )  one recovers the same kind of variation obtained of E7. 

Figure 1 (c) depicts dependence of 8, on 8, at  fixed values of 4, (i.e. at fixed values of 
the ground state twist). The relevant range is 0 < 8, < n/2. The results are presented for 
E7 parameters, but very similar conclusions can be reached at comparable values of 4, 
if one employs the 5CB material parameters. As long as the overall twist is small enough 
(see figure 1 (c), curve 1); a stable ground state exists for all 8, in the permitted range. 
When, however, 4, becomes sufficiently high (figure 1 (c), curves 2,3), stable solutions 
of ( 5 )  satisfying boundary conditions (7) do not appear to exist if 8, > some limit 8,; 
clearly, the higher the overall twist, the lower the corresponding 8,. 

It is now necessary to study the effect of H on the ground state. Once the field is 
impressed on the sample, 8(z) and 4(z )  may or may'not continue to conform to the 
symmetries exhibited by the S ,  ground state, depending upon the magnitude and 
direction of the field. A solution of the governing equations (5) satisfying the boundary 
conditions (7) shall be referred to as S ,  distortion or S ,  deformation. 
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Figure 1. Variation of average deformation with different parameters. The sample planes are 
z= & h. In the absence of imposed twist the director is uniformly tilted in the xz plane (13) 
making an angle 0, with the x axis. Except in figure 1 (b), material parameters are those of 
E7 (1 1). Due to an imposed twist of 24,, the S, ground state (8) has a combination of splay, 
twist and bend distortions, with 0 taking the extremum value 0, at the sample centre. In (a) 
and (c), the field is zero. (a) Plots of 6, as a function of #, for @,=(1) 0-05 (2) 0.25 (3) 
0.45radian. A stable ground state configuration cannot be found when #, exceeds a 
critical limit &. (b) 0, versus $,, for 0,=(1) 0.35 (2) 0.37 (3) 0.45radian; the material 
parameters are those of 5CB (12). The qualitative difference in the behaviour of low and 
high pre-tilt cases is discernible. (c )  Variation of 0, with 0,, for different ground state twist ; 
& =( 1) 1.36 (2) 1.46(3) 1.56 radian. When the ground state twist is sufficiently high, a stable 
S ,  ground state may not be possible when 0, exceeds a critical limit BC. Substantially 
similar curves are obtained for 5CB parameters (see $3.1,). (d) 6, as a function of the 
reduced field R(10) when H is impressed along z, the sample normal (a=n/2); 60 

=0.05 radian. & = ( l )  1.17 (2) 1.36 ( 3 )  156. Similar behaviour is seen for 5CB parameters 
with 0, = 0.35 and 0 3 7  radian. (e) and (f) Variation of 0, and #M with R with H acting in 
the xy plane close to the y axis; a = O  and p = 1 5 6  radian; 0, = 0.05. 4 ,  = @(z = 0). The 6(z) 
and &(z) profiles are asymmetric. d o = ( l )  0.39 (2) 0.78 (3) 1.5. When the field becomes 
strong enough, 8,+0 and &-*7c/2 (see $3.2.). 

3.2. H along symmetry directions 
It seems advisable to study the effects of applying H along the dift'erent symmetry 

directions of the S ,  ground state before considering the effect of changing the magnetic 
tilt. One of the symmetry directions is, obviously, the z axis (a = 4 2 ;  then, fi becomes 
irrelevant). Clearly, the field applied along z will not affect the symmetry of the director 
orientation; also, as the director is tilted with respect to the sample planes, a distortion 
can set in without a threshold. 

Plots of 0, versus the reduced field R are shown in figure 1 ( d )  for a given pretilt of 
the ground state (0, = 0 0 5 )  and different twists 4,; the material parameters are those of 
E7. It is seen that when 4, is low, OM increases monotonically with R and approaches 
n/2 when R attains high values. If the overall twist is sufficiently high (see figure 1 (d) ,  
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Bistability of orientation patterns in nenzatics 71 

curves 2,3), the increase of 8M is more rapid, and stable solutions of (5) satisfying (7) do 
not seem to exist when R exceeds some limit Rc1; clearly, the higher the 40, the lower 
the corresponding R,, . Calculations for 5CB parameters show that similar curves can 
be obtained for 0, =0.35 and 0.37 radian. 

Noting that the director at the sample centre is aligned along the x axis, one can 
consider two other configurations for applying H. As before, we choose values of 
ground state twist such that 4, is sufficiently removed from the critical limit &. In the 
first of these, His  impressed along the x axis (a = O =  8). In this case an increase of R will 
cause the director field to rotate towards H without change in the symmetries of the 
angles 8 and 4, so that one can expect a monotonic decrease of 8, when R is enhanced. 

In the other related configuration we consider H applied along the y axis (a = 0, 
,4 = n/2). When R is increased, the director field in the sample gets deformed. It must be 
remembered that the director at  the sample centre is oriented along x (normal to H). 
For this reason, the director distortion changes with increasing R in such a way that the 
symmetry of O(z) and the antisymmetry of 4(z)  are preserved; naturally, OM will diminish 
when R is enhanced. 

The situation becomes more interesting when H lies in the x y  plane, but is not 
directed exactly along the y axis. Then with increasing R, a non-zero magnetic torque 
will be experienced by the director at the sample centre. In this case, the director profile 
will become asymmetric-neither will 0(z) be symmetric nor will 4(z)  remain 
antisymmetric. In particular, 4, = 4(z  = 0) will not remain zero. In earlier work [ 181, 
when asymmetric profiles of 8 and 4 were encountered, 8, and 4, were used to 
represent the average deformation in the sample. For the sake of consistency, this is 
done in the present work too. 

Figures 1 (e) and ( f )  contain the variations of OM and 4M as functions of R with c! = 0, 
p = 1.56; E7 parameters are used with do =0.05 radian. It is seen that when the field is 
sufficiently strong, 8,+0 and 4,-+n/2. It is worth remarking (figures 1 (e) and ( f ) ,  
curves 1,2) that when the ground state twist is not very high, the initial diminution in 8, 
and increase in 4, are quite sharp. Calculations for 5CB parameters with 8,=0-35 or 
0.37 radian yield very similar curves. It should be obvious that for p= 1.58, the sign of 
4, will reverse; otherwise the results are qualitatively similar. 

When the ground state twist is increased further (do = 1.95 radian; figures 2 (a) and 
(b), curve 3), the nature of the variation of distortion with R is found to be quite different 
from that shown in figures 1 (e )  and ( f ) ;  while 8, diminishes with increasing R, 4, is 
found to vary but little. This indicates that for some intermediate 4,, a change over in 
behaviour can be expected. This is indeed found to happen (figures2(a) and (b), 
curves 1,2) for 4o close to 8. It is found that 4, either increases sharply (curve 1) or 
diminishes after an initial increase (curve 2). This behaviour can be seen more clearly for 
5CB (figures 2(cHf)). Interestingly, the 8, variation does not show any drastic 
difference under a small increase in the overall twist. 

It is easy to perceive intuitively why the above behaviour is seen if the directions of 
the field, and also those of the director alignment at the boundaries, are explicitly 
expressed in terms of quadrants in the xy plane. Let 8 be 1.56 radian; then H can be said 
to lie in the first (or third) quadrant. If 4o = 1.56, the directors at z = 5 h will be in the 
first and fourth quadrants. On the other hand, when &, is increased to say 1.9 radian, 
the directors at z = & h will lie in the second and third quadrants. Taking into account 
the fact that the director field twists continuously from one plate to the other, it 
becomes clear that the net magnetic torque should change substantially under an 
increase in the twist. 
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0.0 
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@ M i  A:, #M 

0.0 0.0 
0.0 R 5.0 ( 

0 R 4.0 

0 R 4.0 

0.0 R 3.5 
0.8 

#M 

0.0 
( 0 R 3.5 

Figure 2. Plots of 0, and & as functions of reduced field R for CI = 0 and ,5= 1.56 radian; H is 
applied in the xy plane and is close to  the y axis. The ground state is S , .  (a) and (b)  
Parameters of E7 are utilized. The director pre-tilt a t  the sample planes is Oo =0.05 radian. 
The overall twist is represented by $o=(l)  1.58 (2) 1.6 (3) 1.95radian. (c)-(f), 5CB 
parameters, O,=0.35 radian. In ( c )  and ( d )  curves as drawn 4,, (1) 0.39 ( 2 )  1.17 (3) 1.56 
radian. Curve 3 shows a tendency towards a different behaviour. In (e) and (f)  4o =( I )  158 
( 2 )  1.59 (3) 1.6. A small change in 4o close to /J’ can produce a significant change in the 
qualitative nature of the variation of distortion with R (see 5 3.2.). 

3.3. Variation of magnetic angles c1 and p 
Having determined the ranges of 80 and 4o over which a stable S ,  ground state 

exists, it is now possible to study the effect of changing the magnetic tilt at  a given 
reduced field R; R is generally fixed at a modest value 53. Tnitially, p will be held 
constant and ct will be changed. It appears sufficient to consider the range 06ct<n. 
When p# 0 or n, the 6 and 4 profiles are non-symmetric but, as before, the distortion at 
the sample centre will be used for presenting the results. For reasons which will become 
clear, it is advisable to discuss separately the case of low twist < 4 2 )  and that of high 
twist (& FG 4 2 ) .  

When & is sufficiently small (say 0.39,0.78 or  1.17 radian) the variation of OM and 
4M with c1 is found to be very similar to that depicted in figure 4 of [ 18) and therefore 
diagrams have not been shown. The following features emerge, strongly similar to 
previous results: 

(i) If R is small (typically, < I), 8~ and &, are single valued functions of c1 at fixed 
&, and magnetic azimuthal angle p; this can be called Type A variation of 
deformation. 

(ii) When R is high enough (> 1) but /3 sufficiently low, the 6M and $M curves break 
up into two distinct branches as ct is varied from the two extremities of its 
range; these branches overlap over the bistable region near the centre of the c1 

range; this can be called the Type B variation ofdistortion. The width of the 
overlap or bistable region (the bistability width) generally increases with R at 
given 4o and p. On varying c1 beyond the edge of one branch, a stable S ,  
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Bistability of orientation patterns in nematics 73 

deformation is found only on the corresponding point of the other branch. A 
feature which manifests itself here as before (see figure4 of [lS]) is the 
difference in shapes of the two branches of the curve caused by the different 
extents of coupling of splay-bend with twist. 

(iii) At given &,, when R and b are sufficiently high, the variation of deformation 
with a lies on two distinct continuous branches when a is varied from the two 
ends of its range, but the overlap now extends over the entire n: range of a; in 
other words, the bistability width in now n. This can be called Type C variation 
of distortion. 

The only qualitative dissimilarity is noticed when both 4o and /3 are high (say, 
Qlo= 1.17; p= 1.36 radian); it is found that the bistabiiity width at R =  1.5 is actually 
higher than that at R = 2.0. This reversal in trend is a portent of certain qualitative 
changes which can be expected with a further increase in the ground state twist of S , .  

Figure 3 depicts plots of 8, and 4, as functions of a when the total twist of the S ,  is 
close to n(4, = 156 radian); both E7 (figures 3 (aHd) )  and 5CB figures 3 (e) and (f)) are 
represented with different director pre-tilts at the boundaries. It is seen (curves 1) that 
the distortion changes continuously with a when R is low enough. When the field is 
stronger (curves 2), the deformation change lies on two separate branches which do not 
overlap near the centre of the a range; this can be called Type D variation of deformation. 

1.4 

5.4 

-1.4 
( 

0.2 

0.0 
( 

3/ , -1.4 
0 CY 3.0 ( 

3 / ;  
0 a 3.0 

U) .o OL 3.0 I 0.0 +Mwd) 
0.0 a 3.0 

1.5 

0.1 
0.0 a 3.0 

o.6 +M bf) 
-0.2 

0.0 CI 3.0 

Figure 3. Variation of 0, and & with E, the magnetic polar angle at given values of f i  when the 
ground state twist is close to n (4 ,  = 1.56). In (a)-<d) the material parameters are those of E7 
and the director pre-tilt at the boundaries 0, = 0.05; in (e) and ( f )  5CB parameters have 
been used with 0, =0.35 radian. The magnetic azimuthal angle f i=(a)  and (b) 0.39 (c)<f) 
1.17 radian. The following reduced field strengths have been employed. In (a)-(d) R = ( 1 )  
0.75 (2) 1.0 (3) 1.25. In (e )  and ( f )  R = ( l )  0.5 (2) 0.8 (3) 1.0. When R is sufficiently high, the 
two branches of a given curve fail to overlap near the centre of the CI range, but leave a gap 
over which stable solutions of (5) satisfying (7) cannot be found. An irreversible transition 
from the edge of the gap to the corresponding state having lower overall twist 
( S ,  distortion) cannot be ruled out (see 5 3.3.; also, compare with figures 6 (a) and (b)). 
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74 U. D. Kini 

When a is changed in small steps near one edge of the gap on a given branch, a solution 
of (5 )  satisfying (7) cannot be found when a crosses the gap edge (the algorithm 
diverges). It thus appears that in these cases (curves 2, for instance) there may exist no 
solution satisfying (7) within the gap. We can now talk of a gap width in the case of Type 
D variation, just as we define a bistability width for Type B variation. The question that 
crops up now is, what happens in the gap? It will be seen presently (0 3.4.) that an answer 
to this query may be found through linear perturbation analysis and energetics. 

It should be made clear that the Type D variation of distortion has not so far been 
encountered in earlier work [14-181. It should also be noted (see figures 3(a) and (c), 
curves 1,2) that a small change in the reduced field at a given p can considerably affect 
the shape of one of the branches of the 8, curve. At this stage, an exact quantitative 
dependence of the gap width on R is not known. To ascertain this, it is necessary to 
make detailed calculations for a number of sets of parameters and this becomes time 
consuming. It is found, however, that the gap width increases with R at given Cp0 and f l  
in some cases (see, for instance, figures 3 (e) and ( f ) ) .  

The next task is to fix a at some value and vary p for different values of the reduced 
field R. Here again it is necessary to study separately the low twist and high twist 
regimes. Without loss of generality, the p range can be chosen to be O<p<n. 

When &, is not close to n (say, 40=0.39, 0.78 or 1.17radian) the variation of 
deformation with f l  is found to be qualitively similar to that given in figure 5 of [l8]; 
hence the diagrams have not been included. The following points may, however, be 
noted: 

(i) At given Cpo and a, 6, and CpM are single valued functions of p when R is small 
(< 1); this is Type A variation of distortion. 

(ii) When the field is stronger ( R >  l), the 6, and +M curves break up into two 
distinct branches when p is varied from 0 and from n (this is Type B variation of 
deformation); these branches overlap near the centre of the p range with the 
bistability width generally increasing with reduced field. When a is high 
enough, the two branches for the same R have different shapes; as before, this is 
interpreted as being due to the different extents to which the splay-bend and 
twist distortions couple when p is varied from the extremities of its range. 

(iii) When a is sufficiently high, Type C variation is also noticed when the field is 
strong enough; this involves the deformation varying along two distinct 
branches which overlap over the entire /3 range. 

These results should be contrasted with figures 4 ( d H f )  which have been obtained 
for a high twist of the S ,  ground state (&= 1.56radian). It may be observed that at 
sufficiently elevated fields the two branches of the 6, and $, curves fail to overlap near 
the centre of the p range leaving a gap where stable solutions of (5) satisfying (7) cannot 
be found (Type D variation ofdistortion). It is found (see figures 4 (c) and ( d )  drawn for E7 
parameters) that this behaviour occurs even at  low R when a is sufficiently high; in 
general, the gap width increases with field strength. The results for 5CB (see figures 4(e) 
and ( f ) )  are given for comparision. 

Before closing this section, mention must be made that the above studies have also 
been extended to E7 parameters with a higher director pre-tilt of 8, =0.15 radian. It is 
found that the qualitative nature of the results is unaffected; some of the effects are, 
however, accentuated. For instance, the gap width for a variation (/I variation) becomes 
broader as compared to that for the corresponding case of lower director pre-tilt. 
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Figure 4. B, and 4, versus ,B, the magnetic azimuthal angle for &, = 1.56 (overall twist of S ,  is 
close to n radian). In (a)-(d) E7 parameters are used with Bo = 0.05 radian; in (e) and ( f )  5CB 
parameters are employed with the director pre-tilt at the boundaries 0" =0.35. The 
magnetic polar angle cc=(a) and (b) 0.78, (c) and (d)  1.17, (e) and (f) 0.78radian. The 
reduced field R takes the following values. R = (1) 1 .O (2) 1.5 (3) 3.0 in (a)<d). R = (1) 0.5 ( 2 )  
1.0 (3) 2.0 in (e) and ( f ) .  When the field is sufficiently strong, it appears that stable solutions 
of(5) satisfying the boundary condition (7) may not exist in the gap near the centre of the /3 
range. It seems reasonable to conclude (see figure7(a) and (b)) that there might occur a 
transition to the S ,  state having lower overall twist (see 3 3.3.). 

3.4. Stability analysis of the S, deformation states 
As was done in earlier studies [17, IS], it is natural to wonder about the stability of 

the static distortions which are obtained by solving (5)  with (7). This becomes 
particularly important when the deformation lies on two distinct branches which either 
overlap or do not (as in figures 3 and 4). It must be remembered that in the present work 
we are studying director profiles described by two angles, and it is necessary to use the 
time dependent stability analysis which was developed in [1 81; a brief description of 
this technique is given below. 

Consider the static distortion ( 3 ) .  It is now assumed that perturbations @'(z, t )  and 
&'(z, t) are imposed, respectively, on O(z) and &z); t is the time coordinate. Then the 
director field is given by 

n"= [cos ( H +  B")cos(~ + d"), cos (0-t @")sin(d, + $"), sin (8+ S")J. (14) 
It should be noted that the perturbations are supposed to be dependent on only one 
spatial coordinate, z. According to continuum theory [l-51, the time rates of change of 
the director perturbations, 88"/8t and d@/d t  give rise to the viscous stress components 
C,, and Zzy; these, in turn, bring into existence the velocity field 

(15) 
which is also a function of z and time. As the director perturbations have been taken to 
be of first order, it is reasonable to regard the velocity components in (15) to be linear 

v = E u x k  tk u,@, t), 01, 
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76 U. D. Kini 

perturbations. Linearizing with respect to the perturbations and their derivatives and 
using (5), one obtains a set of four coupled linear partial differential equations (see 
equations (4.8) of [18]) which are solved with the boundary conditions 

these represent rigid anchoring of the director as well as the no-slip condition of the 
velocity at the sample planes. If the director anchoring is weak, the first and second 
conditions in (16) will have to be modified. 

It is possible to separate ou t  the variable t by using the ansatz exp(vt) for the time 
dependence of the perturbations; this reduces the governing equations to a set of linear 
coupled ordinary differential equations which can be solved with the boundary 
conditions (16) to evaluate v, the inverse relaxation time at given values of the reduced 
field, magnetic tilt angles, ground state twist and boundary tilt; v is found as an 
eigenvalue satisfying a compatibility condition (for details of solution, see 54.2. of [18]). 
In general, many solutions can be found for v and all of them satisfy the compatibility 
conditions. Out of these, only the least negative value, vG, is chosen; this corresponds to 
the least damped mode. It is now possible to study vG as a function of different 
quantities. 

In the present calculation, the material parameters of 5CB [25] have been used. The 
values of the elastic constants have been summarized in (12). The viscosity coefficients 
are assumed to be ([25]; see also equation 4.13 of [lS]), 

(pl, p 2 ,  p 3 ,  p4, p 5 ,  p 6 )  = (0.0, - 0.0941, - 0.0045, 0.0824, 0.0569, - 0.041 7) Pas. (1 7) 
It is well known that the relaxation time of perturbations depends strongly on the 
sample thickness; therefore a semi-sample thickness of h = 100pm has been employed. 

Figure 5 summarizes some of the relevant results on the variation of vG with the 
magnetic tilt. It is found (see figure 5 (c), curves 2; figure 5 (d) ,  curve 1; figure 5 ( f ) ,  
curvel) that vG remains negative over the entire range of angles when the static 
distortion variation is continuous with bistability (Type C) or without it (Type A). 
When the static deformation exhibits bistability involving discontinuous changes 
(Type B variation; for instance, figure 5 (c), curves 1; figure 5 (e), curves l), vG +O near the 
edges of the bistable region showing that the static distortion has the propensity to 
undergo instability at those points. A similar result is found to be valid in those cases 
(Type D variation) where a gap exists instead of the bistable region (figure 5 (d) ,  curves 2; 
figure 5 ( f ) ,  curves 2); as can be seen, vG+0 when the magnetic angle approaches the 
edges of the gap. 

Figure 5 (a) is relevant to figure 1 ( d )  (H applied normal to the sample planes) and 
shows that the deformation becomes unstable when the field strength is increased 
beyond a certain limit. 

Results in figure 5 (b) should be compared with those in figure 1 (b). It is found that 
the static dostortion remains stable over the entire range of the ground state twist when 
0, = 0.35 radian (curve 1); when 0, = 0.37 radian, however, instability sets in (curve 2) 
when 4, exceeds some threshold value &. A noticeable feature of figure 5 (b) is the cusp 
which occurs on both curves. In this case, the ground state director orientation is such 
that %is symmetric and 4 antisymmetric with respect to the sample centre. It is natural 
that two distinct, uncoupled perturbation modes will exist, each mode having its own 
spatial symmetry. Such modes have been studied in a different context [27] and their 
time constants are known to cross over with variation of parameters. Remembering 
that vG is the least negative value of v, it seems plausible that the cusp represents a point 
of cross over between two independent uncoupled perturbation modes. 

O”(Z= +h,t)=O $”(z= k h , t ) = O  u,(z= f h , t ) = O ;  u,(z= f h , t ) = O ;  (16) 
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Figure 5. Results of linear stability analysis indicating variation of vG, the least negative value of 
the time constant, with different parameters. The material parameters are those of 5CB 
(1 2,17). The sample thickness, 2h = 200 pm. (a) vG versus R, the reduced field, when H is 
normal to the sample planes; magnetic polar angle, GI= 1.57. The director pre-tilt at the 
boundaries, #,=00.35 radian; For the the S ,  ground state, & =(1) 1.36 (2) 1.56. Compare 
with curves 2 and 3 of figure 1 (d). (b) vG versus 4, in the absence of the field; R = 0.0, = (1) 
0.35 (2) 0.37 radian. Compare with curves 1 and 2 of figure 1 (b). ( c )  vG as a function of a. 0, 
=0.35; q5,=0.78radian. (1) R=1.25; p=0.39radian (2) R=1.9; p= 1.17. The arrows 
indicate the direction of change of E on the two curves for Type C variation of distortion 
(see figure 4 of [ 181 for illustrative plots of deformation). (d) Variation of vG with a for f l  
= 1.17,0,=0.35 and 4,= 1.56radian. R=(1)0.6(2) l.O(compare with figures 3(e)and(f). 
(e) Plots of vG versus fl. a=0.39,0,=0.35 and 4, =78 radian. Results represent R =(1) 1.1 
(2) 1.5, (for illustrative plots of distortion, see figure 5 of [18]). ( f )  vG versus /1 for a =0.78, 0, 
= 0.35 and 6, = 1.56 radian. R = (1) 0.7 (2) 1.0, (compare with figures 4 (e )  and ( f ) ,  (see 
9 3.4.). 

Before closing the discussion, it is worth noting that for Type C variation (see, for 
instance, figure5(c), curves2) the value of vG is, in general, different for the two 
continuous branches of the deformation which are obtained by changing a from the 
two extremities of the range (the direction of a variation is indicated by the arrows). 
This also shows that the two states have, in general, different free energies at  any given 
a. As described earlier [l 81, this seems to be caused by the different extents to which the 
fundamental deformations of a nematic couple with one another when the magnetic tilt 
is varied in opposite directions, interestingly, vG is negative for either branch which 
means that the distortions on both branches are stable against small perturbations. At 
the two extremities of the range, however, the time constant for one branch is higher 
than that of the other; essentially, the deformation at the end of one branch is more 
stable than that on the other branch. The question that arises is whether the distortion 
with higher vG is more unstable against non-linear perturbations. It should be 
instructive to find out what happens in this case when a is varied back and forth over its 
entire range of values. 
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78 U. D. Kini 

4. Possible directions of change at gap edges 
4.1. Alternative deformation states 

The results of $3.4. have shown that the S ,  static distortion (3) satisfying the 
boundary conditions (7) becomes unstable against linear perturbations at certain 
values of field strength and tilt. The linear stability problem being one of the eigenvalue 
kind, the eigenvectors (actual magnitudes of the perturbations at threshold) are not 
completely determined; the actual direction of change at an instability is not known. In 
principle, this can be ascertained by a rigorous solution of the non-linear dynamical 
equations (see equations (4.3), (4.4) of [ls]), but this task is beyond the scope of the 
present work. An attempt can still be made to  understand the kind of end state the 
deformation acquires after undergoing instability by using previous results [l 1,121 
which are based on Considerations of energetics and symmetry. 

The first observation to be made is that before and after the instability, the 
orientation of the director field at the sample plates should remain unaltered; this is 
required by the rigid anchoring hypothesis. It is meaningful, at this stage, to understand 
this ‘direction of orientation’, not in terms of values assumed by angles, but in terms of a 
physical direction which is fixed relative to the chosen coordinate axes. But the non- 
polarity of the director field enables us to consider related states of deformation which 
may be obtainable by reversing the orientation of n at one of the plates without 
changing its physical direction. 

To understand this, consider the 4, variation at 0, = 0.05 radian in the absence of a 
magnetic field (figure 1 (a), curve 1 ) .  When I$,, = n/2, the S ,  ground state has a total twist 
of 24,=n(this is also referred to  as a 9 d a d 8  in [ l l ,  121). While the director at the 
sample centre is along the x axis, the directors at the boundaries are in the yz  plane such 
that 

n(z = k h) = (0, cos 0,, sin 0,). (18) 

This is a distortion having O(z) symmetric and 4(z )  antisymmetric. It is immediately 
clear that if we could reverse the direction of n at one of the plates (say, at z = - h), we 
could get a different deformation state in which the director orientation at the two 
plates is still in the y z  plane, but given by 

n(z = k h)  = (0, cos 0,, f sin Oo), (19) 
with an overall twist of only 24, - = 0; in this state, 0(z) is antisymmetric and this state 
can be identified with the & ~ L G &  in [ l l ,  121. 

The above considerations enable us to study a related ground state (which we shall 
refer to as S,) which is given by the distortion (3) but with the boundary conditions 

0, = +O,; 4- =n--,; $+ =4,. (20) 
In the particular case of &o = 4 2 ,  this reduces to the 2 a&&. For general values of B0 
and @,, the S ,  ground state is associated with angles 0(z) and 4 ( z )  such that 0(z) and 4(z )  
-n/2 are both antisymmetric. Thus the S, ground state can be regarded as a 
generalization of the P d a l e  by the imposition of an overall twist of 24, - n. In the 
present description of the S, ground state, the director at the sample centre will lie 
along the y axis. 

It is clear that the S ,  and S ,  ground states are topologically inequivalent [ 111; there 
exists no continuous transformation which can take the S, distortion into the S, 
deformation or vice versa. It need hardly be emphasized that the governing 
equations(5) can be solved with the boundary conditions (20) to yield the O(Z) and $(z)  
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profiles corresponding to the S ,  state. When the magnetic field is impressed along some 
arbitrary direction, it is unlikely that O(z) and $(z)  will exhibit the symmetries of the S, 
ground state. Still, using the same convention as before, we shall refer to any static 
distortion obtained by solving the governing equations (5) with the boundary 
conditions (20) as the S ,  deformation. 

Consider, for instance, curve 1 of figure 1 (a). When & > cPc % 2.35 radian, the S ,  
ground state cannot exist. A comparison of the total free energies of the S ,  and S, states 
in the absence of an external field shows that at 4o M &, S, has much lower free energy 
than S,; the reason is that the S, ground state is associated with a much lower overall 
twist (about 1.6 radian) than the S, ground state (4.7 radian). This enables us, along 
with the results of 9 3.4., to put forward the hypothesis that when &, exceeds &, a 
transition should take the deformation from the S, kind to the S ,  kind. When such a 
transition occurs, the excess of free energy will be dissipated by viscous effects; in 
addition, the overall twist will be reduced considerably (by nearly n radians). Hence, the 
transition is likely to be irreversible. 

4.2. Results for the solution S, 
With the above discussion, it is now possible to continue the study of figures 3 and 4 

which represent the variation of S, deformation as a function of the magnetic tilt, the 
overall twist being 240 = 3.12 radians. This is done by comparing the above results with 
those obtained for the S, solution with the same value of 4o (total twist being about 
0.02 radian). In order that the field strength might remain unchanged, the same 
definition (10) is used for the reduced field R.  It should be borne in mind that the S ,  
ground state is obtained by starting with a reversely pre-tilted splay-bend distortion in 
the yz plane and imparting to it an overall twist of 24,-n. When this is done, the 
director at the sample centre will lie along the y axis (4 = n/2 and 8 = 0) with equal and 
opposite twists of magnitudes 140-n/21 on either side of the sample centre. 

as functions of a, the magnetic polar angle. In 
figures 6(a )  and (b), the values of R and ,G used are the same as those employed in 
figures 3 (e) and (, f) .  It is found that either the deformation varies continuously over the 
entire a range without exhibiting bistability (Type A variation) or it lies on two 
branches which overlap near the centre of the a range (Type B variation); in either case, 
there are no gap widths as in figures 3 (e )  and (f ). It is, therefore, possible that when the 
solution S, becomes unstable (see, for instance, the points U on curves 2, figures 3 (e) 
and ( f ) )  at one edge of the gap, a transition occurs to the corresponding points U 
(figures 6 (a) and (b); curve 2) so that the distortion changes over to the S ,  type. When c1 

is varied further, the deformation will remain of the S, type and will lie on curve 2 of 
figures 6 (a) and (b). The transition from S, to S, is likely to be irreversible. A similar 
conclusion can be arrived at by comparing the curves 3 in the same set of diagrams. 
Under the transition S, -+S , ,  the total twist in the sample gets reduced by nearly n 
radian. It is also clear now that if the field strength is gradually reduced to zero, the S 2  
and not the S ,  ground state results. 

While figures 6 (a) and (b) deal with a low overall twist of the S, distortion, 
figures 6 ( c H f )  describe the variation of the S ,  deformation with tl at higher ground 
state twist. Of particular interest are figures 6(e) and ( f )  which are drawn for & = O  
(overall twist = n radians); in this case, the directors at the sample boundaries will lie in 
the xz plane. It is found that at sufficiently elevated fields there are gaps in the a range 
over which the S ,  distortion satisfying boundary conditions (20) may not exist. By 
using the same arguments that were employed in §4.1., it can be concluded that when a 

Figure 6 shows plots of 19, and 
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Figure 6. Variation of deformation with the magnetic polar angle CL for different values of the 
magnetic aximuthal angle fi  and reduced field R.  The ground state which is of type S, (20) is 
in a reversely pre-tilted cell and on it a twist of 2 & - x  is imposed. In (u) and (b), 5CB 
parameters are used with &,= 156, f i =  1.17 and 0,=0.35 radian. R = ( l )  0 5  (2) 0.8 (3) 1.0. 
An irreversible change from S, (see figures 3 (e) and ( f ) ) ,  to S ,  may occur at U ;  after the 
change-over, the distortion will continue to be S, as there results considerable diminution 
in the twist. In figures (c)+f), E7 parameters have been chosen with 0, =0.05 radian. The 
reduced field R = ( 1 )  1.0 (2) 1.5 (3) 2.0. The remaining quantities take the following values: 
(c) and ( d )  4o =0.78; @=0.39 (e) and ( f )  Cpo =0.0; 0 =0.05 radian. It is seen from (e) and ( f )  
that when the overall twist of the S, deformation is high enough, a suitably directed 
magnetic field may cause an irreversible change in the distortion of the S, kind when tl 
crosses the edges of the gap, greatly reducing the total twist in the sample (44.2.). 

varies beyond the gap edges, the deformation changes from the S, type to the S ,  type 
( 1  3) satisfying boundary conditions (7) and having an overall zero twist. This appears to 
indicate that an irreversible transition from S, to S ,  is also possible under certain 
conditions. 

The variation of the magnetic azimuthal angle offers a somewhat greater variety 
keeping in mind the nature of the S, ground state. Figures 7 (a) and (b) depict plots of 
the deformation versus p at different values of reduced field for 5CB parameters at 
4, = 1.56; the director pre-tilt 8, = 0.35 and a= 0.78 radian. The /3 range is the same as 
that used in figure 4. It is found that 6, and 4M are single valued and continuous over 
the entire ,6 range (Type A variation). Curves drawn for E7 parameters with 8, = 0.05 
and different values of 4, (= 0.39,0.78,1.17) have essentially the same shape as those of 
figures 7 (a) and (b); these results have not been presented. Comparing figures 7 (a) and 
(b) with figures 4(e) and (f)  it becomes clear that transitions from the points T at the 
gap edges in figures 4 (e )  and (f) to the corresponding points in figures 7 (a) and (b) may 
be expected; again, such a transformation can be understood to be irreversible. 

For the S ,  ground state (20), one can consider a second range for f l  variation, 
namely, n/2 6 p 6 3n/2. Figures 7 (cHf) show the nature of deformation change with p 
for E7. In figures 7(c)  and (d), the total twist in the sample is small (4,= 1-56). It is 
possible to discern all three types (A ,  B, C )  of variation for different field strengths. 
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In figures 7(e) and (f), the overall twist is nearly n radian (40 = 0). When the field is 
weak (curves I), the distortion change is of Type A4.e. single valued and continuous 
over the entire f i  range. At more elevated field strength (curves2) it appears that a 
solution of the governing equations satisfying boundary conditions (20) cannot be 
found over the gap width near the centre of the p range. As conjectured earlier, it is 
likely that when p crosses the gap edges, the S, deformation changes over irreversibly 
and discontinuously to a distortion of the S, kind having much lower total twist ( = O )  
and satisfying the conditions (7). The argument can be given exactly as it was in $4.1. 
The diagrams for the S, solution at 4o = 0 and corresponding field strengths have not 
been provided for comparison. Obviously, the variation of S, distortion will be of 
Types A,  B or C and once the change over has occurred (the ground state will be of the 
kind studied in [ls]) from S, ,  the deformation will continue to remain S , .  

It may be noted (see figures 7(a)  and (b)) that there exists a qualitative difference 
between the low field (curves 1) and high field regimes (curves 2 and 3). The S, ground 
state (20) is one in which OM = 0, +M = n/2, corresponding to antisymmetry of O(z) and 
4(z)--n/2. When the field is low (curves I), OM-+O and q!)M+n/2 at either end of the f i  
range, 0 6 f i  < n and the S, deformation assumes the symmetries of the S, ground state 
at the two extremities of the f i  range when the field is not very strong; for other values of 
jl, the distortion becomes non-symmetric. When p=O or TC, H lies in the xz plane and is 
normal to the ground state director field at z=O. Thus when the field is weak, the 
director at the sample centre assumes they direction when p = O  or z even in the presence 
of a j e l d .  

0.0 0.0 - 3.0 
1.7 4.7 

-1.21, 3>, 
4.7 1.7 a 

0.2 $Mp 0.5 $Mw 0.3 

0.0 P 3.0 1.7 P 4.7 1.7 P 4.7 

Figure 7. Plots of 8, and 4 ,  as functions of /l for different values of c( and R .  The ground state is 
S, (20)  with the total twist in the sample being n - 2 4 , .  (a )  and (b)  $,= 1.56. 5CB 
parameters. tl,=0.35. a=0.78. R = ( 1 ) 0 5 ( 2 )  1.0(3)2.0. The/ l rangeo</ l<n  which is the 
same as that employed in figure 4. T is the point of an irreversible transition from S ,  (see 
figures 4(e) and (f) to  S,. (c)+,f) The p range is n/2</B<3n/2. E7 parameters. 0,=0.05. 
a= 1.17.(c)and(d)b0= 156,Thecurvesarerepresented by R = ( l )  1.0(2) 1.5(3)2.0.(e)and 
( f )  q50 = 0.0. The curves are drawn for R = (1) 0.8 (2) 1.5 (3) 2.2. When /l approaches the 
edges of the gap near the centre of the range and the overall twist is sufficiently high, the 
deformation may change from the S ,  to the S ,  type (see 54.2.). 
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82 U. D. Kini 

When the field is strong enough, however, OM remains non-zero over the entire ,8 
range; in addition, the 4M at the extremities of the ,8 range differ considerably from n/2 
and the distortion will remain non-symmetric over the entire p range. This leads to the 
following conclusion. Let ,8=0 or  n; let a also take some value. We start with the S ,  
ground state (20) and increase H gradually. Initially, e(z) and (p(z)-n/2 will remain 
antisymmetric (calculations show that this is, indeed, true; the O(z) and 4 ( z )  profiles do 
get deformed under an increase of field, but they retain the symmetries of the S, ground 
state). When H exceeds some critical threshold H,, a transition occurs and the director 
distortion becomes asymmetric. This view is especially strengthened by the realization 
that H, which lies in the xz plane, does not exert any torque on the director (oriented 
along they axis) at the sample centre of the S, ground state. An increase of H causes a 
build up of distortion on either side of the sample centre. When the field is strong 
enough, this deformation may be so great that a stable solution satisfying (20) may not 
be possible if it also has to satisfy the symmetires of the S, ground state and a transition 
occurs to a non-symmetric distortion state. Such transitions have been studied earlier 
[28] for special orientations of electric and magnetic fields. 

Assuming that such a transition is possible (presently, we prove that it exists), the 
following questions arise: 

(i) At  the threshold, will small perturbations in the director field tend to grow? 
(ii) Will the transition be of first order or second order? 

(iii) Will domains form above the threshold? 

An attempt is made to answer the first two questions in the next section. It is rather 
difficult to answer the last one, as the deformation has been assumed to depend on only 
one coordinatebin t'he present work. It is also clear from figures 7 ( a )  and (b) that when 
the field is strong enough, 4, appears to take a low value when ,8 is zero and assumes a 
high value at the other end of the j3 range. In addition, the variation of distortion is seen 
to be single valued (it is of Type A,  rather than of Type C). It seems, therefore, that when 
,8 is close to zero (or n), 4, will be nearer zero (or n) at high field strengths. Hence, one 
domain at a time will be considered in the present work depending upon the value of ,8. 

4.3. Estimation of' the threshold H ,  at p = 0, n 
Before setting up the governing equations for linear perturbations, it seems worth 

studying the variation of S, deformation (20) as a function of the field strength at the 
two ends of the [j range. For this section alone, we use 

r = HIH,; H ,  = (n/2h) ( K  I I P O X A )  (21) 

to represent the reduced field where H ,  is the splay Freedericksz threshold; H ,  (9) is $o 
dependent and we have to compare curves for different $o in the same diagram. Figures 
8 (a)-( f )  summarize the salient results. It is convenient to discuss the results under two 
broad categories-results for low overall twist (see figures 8 (a)-(d)) and those for high 
twist (see figures 8 (e) and (f)). 

It is observed (see figures 8(+0)) that for fixed a (magnetic polar angle) and 
boundary tilt (OJ, H, # O  and 4, # nj2 when r is sufficiently high. When r is diminished 
and r-some threshold rc, it is found that O,+O and $M+nj2; for r < r c ,  6 ,  and 4, 
maintain their constant values (this results in horizontal straight lines in the diagrams; 
these parts of the diagrams have not been plotted to avoid conflict between different 
curves). It is clear from these diagrams that the transition is one of second order. 
Another feature that emerges is that for /3=0 and P=n, the 8, curves practically 
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o'Il[ O . q f l  

0.6 

0, 

0.0 0.0 0.0 
0.9 r 1 . 1  0.8 r 1 .o 0.8 r 1.4 

Figure 8. Variation of S, deformation with magnetic field strength for different values of the 
director boundary t i l t  (On), magnetic polar angle a and $0 (overall imposed twist n-2$,). 
E7 parameters have been employed. The curves with primed (unprimed) numbers are 
drawn for /3 = 7c ( p  = 0). The dimensionless field r = H / H ,  where H ,  is the splay Freedericksz 
threshold. In (o)-(d), the OM curves nearly coincide for p=0 and p=n. (a) and (b)  & = 1.56, 
0, = 0 . 0 5 , ~  = ( 1 )  0.4 (2) 0 8  (3) 1.2, (c )  and (d) $0 = 1.56, CY= 0.4,0, =( 1 ) 0.05 (2) 0.45 ( 3 )  075, 
( P )  and (, f)  0,=0.45, s=0.4, & = ( I )  1.17 (2) 0.78. When r>a threshold r,, the distortion 
becomes non-symmetric. Ifthe imposed twist is small enough ((u)+d)), rc for p = O  and [I= 7c 

coincides for different values of c( and 0,. The two thresholds become different when the 
total twist is enhanced (figures ( e )  and ( f ) ;  see 54.3.). 

coincide. The &, curves, however, lie on two distinct branches, but both branches 
approach the value of n/2 at almost the same rc value. Predictably, at a fixed O0 (see 
figures S(a) and (h)), rc increases with a; for a given G( (see figures 8(c) and (d)), rc 
diminishes when the boundary tilt is enhanced. 

In figures 8(e) and (j), a fairly high boundary tilt (do =0.45) has been chosen. The 
magnetic polar angle has also been fixed sufficiently away from zero (a=O4); this 
means that the directions of H for the two f l  values will no1 coincide. The results have 
been presented for two fairlyelevated values of the overall twist (4,, =0.78, 1 . 1  7radian; 
equivalently, the total twist is approximately n/2, 3744, respectively). While the shapes 
of the curves are similar to those in figures 8(a)+d), one important deviation is 
discernible. For a given +o, the rc value for f l = O  and that for f l=n do not match; in 
general, the former seems to be higher than the latter. Calculations have shown (results 
have not been presented here) that rc becomes identical for B = O  and n when the 
magnetic polar angle, 2, is zero for the same high values of do and 0,; in this case, H 
would be directed along the x axis for both values of 8. It is now required to calculate rc 
for different parameters. 

It is possible, in principle, to employ the time dependent perturbation technique (as 
in 9 3.4) to determine rc. One can guess that for r < rc, the time constant vG < 0; when 
r+rc, vG+O. It is, however, much simpler to use the time independent perturbation 
technique to determine the threshold rc' In this method it is sufficient to consider 
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84 U. D. Kini 

perturbations only on the director field neglecting time dependence and the associated 
viscous effects. The perturbations W(z)  and @(z) imposed on O(z) and 4(z) ,  respectively, 
are assumed to be functions of z alone so that the resulting director field takes the form 
(14). Using the torque equations (5) satisfied by 8(z) and &z), the governing equations 
for the perturbations can be written as 

The orthogonal collocation method [22] can be conveniently employed to solve 
relations (22) and (23). Clearly, this becomes an eigenvalue problem from which the 
critical value of r can be determined; the absolute magnitudes of the eigenvectors (the 
perturbation profiles) remain unknown. The method of solution is as follows. First, p is  
fixed at zero. Then, at given values of O,, 4, and c(, the S, deformation is calculated by 
solving (5) with (20) taking zero field strength and the compatibility condition resulting 
from the eigenvalue problem (22) and (23) are evaluated. This is repeated by increasing 
H in small steps until, at a certain critical value H ,  the compatibility condition is 
satisfied. This defines rc for the given case. By varying different parameters, the 
variation of r ,  is studied for p=O.  Needless to say, the entire procedure can be repeated 
for j = n. The critical field determined in this way is found to be close to that shown in 
figure 8. 

Plots of r ,  versus 8, are found in figure 9 for two widely differing values of overall 
twist; E7 parameters have been used. The following conclusions can be reached. In all 
cases rc is identical for /3 = 0 and p = n when 0, is sufficiently small. In particular, the rc 
versus, 0, curves are practically identical (see figures 9 (u) and (b)) for the two f l  values 
when the overall twist (n  -24,) is not high. When 4, is low (see figures 9 (cHf)),  the rc 
versus 8, curves at j = 0 and n are similar in shape only for ct close to zero (for instance, 
curves 1). When CI is sufficiently elevated, however, the variation of rc with 8, is found to 
be quite different for p = O  and 71. For instance, when 8, is sufficiently high (say, 
0.4 radian), rc at f l=  0 is found to be higher than that at f l  = n; this is in qualitative 
agreement with the results of figure 8. When GI is increased close to n/2 ,  it is expected 
that the curves for p = O  and n should again become similar in shape; this is mainly 
because at CI = n/2,  when H is normal to the sample planes, j becomes irrelevant. This is, 
indeed, found to happen (curves2 in figures 9(e) and ( f ) ) .  

It is rather predictable that in all cases, rC+O as 8,-*71/2. It is worth discussing this 
point in two stages. Firstly, let us assume that the S ,  ground state exists for any value of 
8,. Then the elastic deformation energy of the ground state would become considerable 
for 8, close to 4 2  (remembering that d(z) is antisymmetrical) and an instability could 
set in at very low field strengths. This takes us to  the next question: In a real situation, is 
it possible to have the S, ground state with high pretilt angles 6,? 

To obtain the S ,  ground state one prepares a reversely pre-tilted sample (19) with 
no overall twist with a director pre-tilt of 8, at the boundaries. At this stage one expects 
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0.8 

'C 

0.0 
L 

Figure 9. Plots of rc versus Bo, the director pre-tilt at the sample boundaries for different values 
of Cpo and CI. The parameters of E7 have been used, H is applied in the xz plane with = 0 (a), 
(c) and ( e )  or /l=n (b), (d) and ( f ) .  The deformation is of S, type (20) such that O(z) and 
Cp(z)-~/2 are antisymmetric relative to the sample centre as long as r,  the reduced field 
(defined as in figure 8) is less than the critical value rc Above rc, the distortion becomes 
non-symmetric. The overall twist is z - 2 4 ~ ~  with Cpo=(a) and (b)  1.56 (+O) 0.39radian. 
The magnetic polar angle a=( l )  0.05 ( 2 )  0.39 (3) 0.78 in (a) <d); a=(1) 1.17 ( 2 )  4 2  in (e) and 
( f ) .  For small overall twist (a) and (b) the curves are identical at both j values (a) and (b). 
When the overall twist is high enough (c)<f) the two curves become dissimilar in shape 
especially for ~1=0.78, 1.1 7; the shape similarity is regained for CI = 4 2  (e) and ( f ) ,  curves 2. 
Parts of the curves in the high B0 range may not be of practical interest (see $4.3.). 

a mono-domain splay-bend distortion with 8(z) being antisymmetric; when 8, is low 
enough, this would correspond to  the 2 d a d e  described in [l 1, 121. The S, ground 
state now results when the two sample planes are twisted in opposite directions about 
the z axis through the same angle /n/2 - $,I. But it is well known [ 11,121 that when Oo is 
high (typically, 8,>n/4), it is not possible to  get the c?? h ~ d 8  alone; the sample 
generally breaks u p  into adjacent domains of & and -Y- d d 8  separated by 180" twist 
walls. It is not clear, for example, as to what will happen if, on  such a sample, a non- 
trivial overall twist (of say n/4) is imposed; will a mono-domain S ,  ground state result 
through annihilation of defects? An answer can be provided by experiment. For  the 
moment, it is advisable to consider portions of the rc versus B0 curves (see figure 9) in the 
high 0, range to be only of academic interest. 

Before closing this section, it seems worth commenting on  the special case of 
$,=n/2 (the ground state is the 2 && in which $ is a constant and  8(z) is 
antisymmetric). When a#O, the results are similar to those for the S, case with low 
overall twist (40 = 1.56); when Y < rc, 8(z) is antisymmetric and 4 ( z )  = ~ / 2 ;  when r > rc, 
both O(z) and &z) become non-symmetric in the sample. In the particular case of a=O 
(H lies along the x axis for both B = O  and n), however, the distortion above threshold is 
one in which O(z) is antisymmetric, but $(z)  is symmetric; this is a qualitative difference 
between results for the cases of twist and  no  twist. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



86 U. D. Kini 

5. Nematics with negative diamagnetic anisotropy (zA < 0) 
So far the material has been assumed to have positive diamagnetic anisotropy. In 

such a case the director field tends to align parallel to the applied magnetic field. When 
the nematic has negative diamagnetic anisotropy, H tries to push the director field into 
a plane normal to H. Naturally, the nature of the variation of distortion with magnetic 
tilt can be expected to be different from that studied in previous sections. It is indeed 
known [ 183 that application of the magnetic field along certain directions can lead to 
different kinds of instabilities in a negative zA material having an undistorted ground 
state. It should be interesting, therefore, to find out what happens when the ground 
state of such a material is distorted (either S, or S2). 

For ease of comparison with earlier results, the material parameters of E7 (1 I )  are 
used, except that zA is taken negative. When the ground state is a simple twisted 
nematic, there exists no threshold field of deformation with H along the z axis. For the 
sake of uniformity, however, the reduced field R is defined as in (10) with the sign of zA 
reversed in (9). The boundary tilt is taken as do = 0.05 radian throughout. 

In the earlier study, the a range of 0 <a  < n had been employed. As the boundary tilt 
is small, this is almost the same as Bo < a < n + Bo. In the present case of a negative xA 
material, it seems reasonable [l  81 to fix the a range shifted with reference to the earlier 
one by 4 2 ;  i.e., 8, - 7112 < a d 0, + n12. In the same way, the p range of variation at a 
given a is fixed as - 7112 < /3 d 4 2 .  

We start with the S ,  ground state (7); calculations are presented for one sufficiently 
elevated value of the ground state twist (4,= 156radian; see figure 10). It is seen that 
when f l  is sufficiently low (see figures lO(aHd)), the variation of deformation with the 
magnetic polar angle a follows either the Type A (when the field is weak) or the Type D 

0.1 

+hi 

-0.2 

-1.5 M 1.5 

-1.5 a 1.5 

0.5 

-0.3 

0.0 

+hi 6 4  

(d  1 
-0.4 -0.3 

O.O -1.5 E ci 1.5 -1.5 a 1.5 

Figure 10. Variation of OM and 4M with c( for a nematic with xAcO.  The elastic constants are 
those of E7. The reduced field R is defined as in (10) by reversing the sign of xA in (9). The 
ground state is S, (8) with q5,, = 1.56 radian (total twist close to n) and director boundary ti l t  
cI,=O.O5. The magnetic azimuthal angle / l=(u)  and (h)  0.39 (c )  and ( d )  0.78 ( e )  and (f) 1.17. 
R =( 1) I .O (2) 1.5 (3) 2.0. When a strong field i s  applied at low (u)-(d) the Type D variation 
results, indicating the possibility that the deformation may change over to the S, type near 
the gap edges (see 4 5). 
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-1.5 p 1.5 -1.5 p 1.5 -1.5 p 1.5 

Figure 11 .  Plots of 0, and 4, versus f l  for a negative xA nematic. St  ground state. Material 
parameters and R defined as in figure 10. R =( I )  1.0 ( 2 )  1.5 (3) 2.0 in (a) and (6). R = ( 1 )  0.75 
(2)  0.95 (3) 1.0 in (c) and (d). R =( 1) 1.0 (2) 2.0 (3) 3.0 in (e)  and ( f ) .  The figures are drawn for 
&=(0,6)  0.78 ( c ) - { f )  1.56 radian. The magnetic polar angle ao=(a)+d) 0.0 (e-f) 0.39 
radian. Type D variation exists when a strong H is applied in the xy plane; when H is tilted 
away from the x y  plane, only Type A variation seems to occur (see 5 5). 

(for strong fields) pattern. The possibility of observing the Type B variation for 
intermediate field strengths cannot be ruled out, but this range of R has not been 
carefully investigated. Interestingly, the nature of the variation changes rather sharply 
when p is high enough (see figures 1O(e) and (f)); for the same range of field strengths, 
only Type A variation is seen with 8, and &, becoming single valued functions of tl. 

When the variation is of Type D (with the S ,  deformation not existing over a gap width 
near the centre of the tl range), the possibility of an irreversible change to S ,  distortion 
with much lower total twist may be expected. 

Figure 11, which shows the variation of the magnetic azimuthal angle, conveys a 
similar message. When a strong field H lies in the xy plane (tl = 0), the Type D variation 
is encountered, showing a change over to S,. When tl is increased by a small amount, 
the variation switches over to Type A even at elevated field strengths. Considering the 
oscillations which occur in dM, it seems interesting to make optical observations in this 
case. 

Figures 12 and 13 contain results on the S ,  solution. It is seen that the main results 
are qualitatively similar to those of the case of a nematic with positive xA. For instance, 
when the total twist is high enough and the field sufficiently strong one observes the 
Type D pattern of variation with the S ,  solution becoming non-existent over a gap 
width near the centre of the tl or B range; clearly, a transition to S ,  is expected at  the 
edges of the gap. The other features to be noted are in the fl variation. It is found (see 
figures 13 (a) and (b)) that a threshold-like behaviour seen in the positive zA material (see 
figures 7(a)  and (b)) is to be found in the present case too, when fi assumes the 
extremities of its range (p  = f 7c/2); at these p values it may be seen that the deformation 
becomes non-symmetrical when the field strength is increased beyond a critical value. 
Needless to say, calculations of threshold at these two B values should lead to 
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0.5 

OM 

-0.5 
-1.5 a 1.5 

+ 1.5 a 1.5 L 

1.4 

*M 

-1.4 L 

-1.5 a 1.5 

1.8 

h4 

1.3 

-1.5 a 1.5 

Figure 12. Variations of OM and dM with the magnetic polar angle a for a negative zA material 
with parameters as in figure 10. The solution studied is of S, type with director tilt at the 
sample planes 0, = 005 radian and overall twist = n- 24,. 4, =(a)  and (6) 0.39 (c)+f) 
0.0 radian. The reduced field R is defined as in figure 10. Curves are drawn for R =( I )  1.0 (2) 
1.5 (3) 2.0. The magnetic azimuthal angle D=(aHd) 0.39 (c) and (f)  1.17. It is found that 
when 11 is high enough and the overall twist sufficiently pronounced (e) and (f’) solutions 
satisfying (20) do not appear to exist over a gap near the centre of the a range, strongly 
suggesting a transition at the edges of the gap to the S, solution carrying significantly 
lower total twist (see 5 5). 

conclusions that are qualitatively similar to  those depicted in figure 9; however, 
detailed calculations cannot be presented here. The other aspect which is worth noting 
is the change in sign of the curvature of the QM curves when c1 is increased from zero 
(compare the shapes of the curves in figure 13 (a) with those in figures 13 (c) and (e). 

6. Conclusions 
The effect of changing the magnetic tilt at constant field strength on the 

deformation in a (non-chiral) nematic sample is the main subject of the present work. 
When the director is tilted at the boundaries and an overall twist is imposed, two 
(topologically inequivalent) ground states are possible and these have been named S , 
and S,. When the total twist is not high, the distortion variation with magnetic tilt 
follows one of the three patterns discussed in earlier work. When the twist is 
considerable, however, a fourth type of variation (Type D) is encountered such that on 
starting with one of the ground states, say the S,, solutions satisfying the boundary 
conditions for S, cannot be found over a gap near the centre of the range of magnetic 
tilt; it is suggested that an irreversible transition to the S, solution may occur when the 
magnetic tilt crosses either edge of the gap. A similar conclusion may be drawn if one 
starts with the S, ground state endowed with considerable twist. This is immediately 
seen as a natural consequence of the material being non-chirai (having no intrinsic 
twist); whatever twist exists is imposed through rotations of the sample planes about 
the sample normal. When the total twist is large, the director deformation becomes 
potentially unstable against perturbations when the magnetic field strength and tilt 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
4
2
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Bistability of orientation patterns in nematics 89 

i, 
-1.5 P 1.5 

Figure 13. 0, and &, versus /3, the magnetic azimuthal angle for the S, deformation in a 
negative xA nematic. For definitions of the reduced field R and values of material 
parameters, see figure 10. The total twist is ~ - 2 4 ~  with $o =(a) and (b) 1.17 (c) and (d) 0.0 
( e )  and ( f )  0.39. The magnetic polar angle x = (a) = (h)  0.0 (c) and (d) 0.78 ( e )  and ( f )  0.05. 
Thecurvesaredrawnfor R=(1)0.5(2) 1.0(3) I.Sin(a)and(h). R = ( l )  1.0(2)2.0(3) 3.0in(c) 
and (d). R = ( l )  1.0 (2) 1.25 (3) 1.5 in (e )  and ( f ) .  It may be observed (a) and (b) that at the 
extremities of the [j range the deformation retains the symmetries of the S ,  solution only 
for weak fields; when the field strength is enhanced, a non-symmetrical solution results 
(compare with figures 7(a) and (b) and figure 9). When the total twist is high enough, the 
distortion may make an irreversible transition from the S, to  the S ,  type near the gap edges 
(see 9 5) .  

assume suitable values. Thus, time dependent linear perturbations tend to grow near 
the edges of the gap and this lends credence to the hypothesis. The above results for a 
positive xA nematic are found to be substantially true even for a negative xA material; in 
particular, the Type D variation of deformation is again seen under similar conditions. 

Calculation for the S ,  solution have been presented in some detail by studying 
nematics with different elastic ratios. While the elastic ratio does affect the stability of 
the ground state, it is found that magnetic field effects are quite similar for different 
materials. In the case of the S ,  solution, one encounters a transition when the strength 
of the applied field is increased with the field impressed along specific directions. Up to 
a threshold value of the field strength, the deformation changes, retaining the 
symmetries of the ground state; when the field strength exceeds the threshold value, the 
distortion becomes non-symmetric. This threshold has been estimated by employing a 
time independant perturbation analysis for different sets of parameters. Such a 
transition has been known for some time [28]; the present work seeks to show that the 
transition may occur even for general field orientations. 

I t  may be advisable to summarize the assumptions made in this work which, in 
some cases, do constitute a limitation. Firstly, the rigid anchoring hypothesis is used. 
This essentially means that regardless of the field strength, the director orientation at 
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the sample plancs rcmains the same as that dictatcd by the easy direction. This 
assumption has a simplifying effect in that the actual values of the sample thickness and 
xA become immaterial and results can be expressed by defining a suitable reduced field. 
In particular, it may be said that for given boundary conditions of the director, the 
results are valid for any sample thickness at the same value of the reduced field. But it 
must be remembered that in a real situation the director anchoring is never rigid [21]. 
When a field is applied to a nematic sample, under the action of the elastic torque 
exerted at the sample planes, the director orientation at the boundaries can change. It is 
natural, therefore, that sample thickness as well as the director anchoring strengths 
should become parameters to be reckoned in more realistic calculations; this should be 
of especial importance when the sample thickness is comparable to the extrapolation 
length. However, the present calculations can be assumed to be valid for sufficiently 
thick samples even in cases where the director anchoring energy at the sample 
boundaries is finite. 

A situation where the presence of weak anchoring can be felt will be the one 
(involving Type D variation) where the solution changes from S, to S, or vice versa. 
Once the change over has occurred at a given magnetic tilt, it is quite likely that the 
director tilt at the boundaries will also be affected. This should be expected as the 
change in the nature of the deformation is accompanied by a severe reduction in the 
overall twist in the sample. Needless to say, anchoring energy will also influence the 
magnitudes of the growth rates of the perturbations. 

One of the effects of weak anchoring will be in defining the domains of definitions of 
the S, and S, ground states. A convenient way of preparing these ground states is to 
start with the director confined to a single plane normal to the sample boundaries and 
subsequently imparting the necessary amount of twist by rotating the sample planes 
about the sample normal. During this process, bulk elastic torques come into the 
picture and these will exert a torque on the director field at the sample boundaries; if the 
anchoring is weak, the director alignment at the sample planes can change and this can 
be expected to affect the domain of stability of the ground state. 

The linear perturbation analysis essentially reduces to an eigenvalue problem in 
which the absolute magnitudes of the perturbations are not known. It is not possible to 
predict the exact direction in which the distortion changes after an instability sets in. 
This becomes possible only if we solve the exact non-linear equations which link 
temporal and spatial derivatives of the director field with the velocity gradients (see, for 
instance equations 4.3 and 4.4 in [ 183.  It seems possible to conclude, as before [ 17,181, 
that the time of transition at the edges of the bistable regions (for Type B variation) 
should increase as the square of the sample thickness when the anchoring is rigid. It 
should be interesting to find out how the time or transition behaves when the distortion 
variation is of Type D; at the gap edges when the nature of the solution changes from S, 
to S, or vice versa, will the time of transition still vary as the square of the sample 
thickne 

While mentioning domain formation, it may be necessary to raise a question related 
to the existence of the ground states even in the limit of the rigid anchoring hypothesis 
(see discussion at the end of $4.3.). It has been assumed that the ground state has a 
mono-domain, homogeneous distortion. While this may be a reasonable assumption in 
the case of the S, ground state, one is not sure about S,; it appears that experiment will 
have to show the way. 

When the original static configuration becomes unstable and the perturbations 
grow, the uncertainty about the absolute magnitudes of the perturbations leads to the 
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possibility of domain formation. At the edges of the bistable region (TypeB variation) 
where the distortion suffers a transition from one branch to another or at the edges of 
the gap (Type D variation) where the deformation changes from S, to S ,  or vice versa, 
the possibility of domain formation must be borne in mind. In the present work, as the 
director field has been assumed to be a function of only one spatial coordinate, it has 
not been possible to study different domains simultaneously. This fact must be born in 
mind while considering the results of figures 8 and 9 on the threshold rC. 

It has been recently shown 1291 that when the anchoring is weak and the applied 
field strong enough, the director field in a nematic sample can get oriented parallel to H. 
The expression for the threshold aligning field has also been calculated for special 
directions of H relative to the sample normal. Earlier studies on bistability in weakly 
anchored nematics [ 171 have indicated similar possibilities. In the light of these results, 
a study of the effects of anchoring strength in the present case assume especial 
significance. It should also be remembered that when the director orientation is 
specified by two angles as in the present case, it may be necessary to consider both the 
polar and the azimuthal anchoring strengths when the anchoring energy is finite. 

Another aspect that presents itself for study is the optical property of the sample (for 
instance, the phase retardation or the transmitted intensity between crossed polarizers, 
etc.). It has been demonstrated [29] for a simple geometry that even when the variation 
of distortion with magnetic tilt looks symmetric with respect to the centre of the range 
of magnetic tilt, the optical properties of the nematic cell may vary most asymmetri- 
cally. Considering the different shapes assumed by the deformation curves in the 
present work, it seems appropriate to expect that a study of optical properties in the 
present case will prove fruitful. 

All the above studies have been made in the static limit. I t  has been assumed that 
each time the magnetic field or tilt is varied in small steps, sufficient time is given to the 
system to attain a new state of equilibrium. It has been pointed out 117,181 that 
extending the above studies to a magnetic field (or the sample) rotating at some 
constant rate should prove instructive, as this might lead to the observation of novel 
flow patterns as has, indeed, been done earlier in many simpler geometries (see, for 
instance, [30]). Independently, such experiments have been reported recently [3 11 on 
polymer nematic materials and new flow patterns observed; these investigators have 
employed the simplest possible ground state for their experiments and have also spun 
the magnetic field about an axis parallel to the sample planes, but normal to the initial 
direction of alignment. It should be interesting to extend this study to low molecular 
weight compounds with particular emphasis on the effect of changing the tilt of the 
magnetic plane. When the boundary director is tilted, it may be possible to compare 
results for S ,  and S, ground states in both the high twist and the low twist regimes. 

Though the governing equations were derived to represent a chiral nematic (or 
cholesteric), the intrinsic chirality has been equated to zero in this work. When the 
material is chiral, the equilibrium pitch of periodicity enters the picture and its ratio 
with the sample thickness appears as an additional parameter. Because of this, results 
have to be presented for different sample thicknesses even in the rigid anchoring limit. 
Preliminary calculations show that the presence of chirality is likely to affect the 
qualitative nature of the results. It is found that at comparable values of the reduced 
field, for example, one gets Type A variation for a chiral material, while one had Type B 
variation for the non-chiral case; Type D variation seems to be absent. Thus, the 
presence of chirality seems to lend additional stability to the orientation pattern. In a 
sense, this is to be expected from the empirical fact that supertwisted nematic displays 
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work; it is the extra ‘spring’ due to the presence of intrinsic chirality that enables the 
ground state to be attained in the off state. 

Another fact has to be borne in mind while studying systems with intrinsic chirality. 
When such a sample of sufficiently short pitch is aligned with the helical axis normal to 
the plates, the deformation produced by applying a magnetic field parallel to the 
sample boundaries will be homogeneous, while that induced by impressing the field 
normal to the plates is periodic. This means that if we start with the field in the sample 
plane and tilt the field towards the sample normal, there should be a critical tilt beyond 
which the homogeneous distortion should disappear; a preliminary study shows that 
this actually happens. Detailed calcuiations for this case will be presented in the future. 
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